Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483871

RESUMO

BACKGROUND: Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious illness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp protease of dengue virus is a potential therapeutic target. This study focused on the in silico drug discovery of RdRp protease inhibitors. METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment. RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A. CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.


Assuntos
Aedes , Cacau , Catequina , Chalconas , Dengue , Animais , Peptídeo Hidrolases , Simulação de Dinâmica Molecular , Catequina/farmacologia , Endopeptidases , Fenóis , RNA Polimerase Dependente de RNA , Simulação de Acoplamento Molecular
2.
Drug Dev Ind Pharm ; 45(9): 1451-1458, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31216907

RESUMO

Objective: The aim of this study was to develop a coenzyme Q10 nanoemulsion cream, characterize and to determine the influence of omega fatty acids on the delivery of coenzyme Q10 across model skin membrane via ex vivo and in silico techniques. Methods: Coenzyme Q10 nanoemulsion creams were prepared using natural edible oils such as linseed, evening primrose, and olive oil. Their mechanical features and ability to deliver CoQ10 across rat skin were characterized. Computational docking analysis was performed for in silico evaluation of CoQ10 and omega fatty acid interactions. Results: Linseed, evening primrose, and olive oils each produced nano-sized emulsion creams (343.93-409.86 nm) and exhibited excellent rheological features. The computerized docking studies showed favorable interactions between CoQ10 and omega fatty acids that could improve skin permeation. The three edible-oil nanoemulsion creams displayed higher ex vivo skin permeation and drug flux compared to the liquid-paraffin control cream. The linseed oil formulation displayed the highest skin permeation (3.97 ± 0.91 mg/cm2) and drug flux (0.19 ± 0.05 mg/cm2/h). Conclusion: CoQ10 loaded-linseed oil nanoemulsion cream displayed the highest skin permeation. The highest permeation showed by linseed oil nanoemulsion cream may be due to the presence of omega-3, -6, and -9 fatty acids which might serve as permeation enhancers. This indicated that the edible oil nanoemulsion creams have potential as drug vehicles that enhance CoQ10 delivery across skin.


Assuntos
Portadores de Fármacos/química , Ácidos Graxos Insaturados/química , Creme para a Pele/farmacocinética , Ubiquinona/análogos & derivados , Administração Cutânea , Animais , Simulação por Computador , Composição de Medicamentos , Emulsões , Nanopartículas/química , Permeabilidade , Ratos , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea , Creme para a Pele/administração & dosagem , Ubiquinona/administração & dosagem , Ubiquinona/farmacocinética
3.
Drug Deliv Transl Res ; 9(2): 418-433, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29667150

RESUMO

Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p < 0.05) being observed at day 14. EPO induced early deposition of collagen as evaluated by Masson trichrome staining that correlated well with the hydroxyproline content assay, with the highest level at days 3 and 7. Vascular endothelial growth factor (VEGF) showed greater amount of new microvasculature formed in the EPO-treated group, while moderate improvement occurs in the LO and OO groups. EPO increased both the expression of proinflammatory cytokines and growth factors in the early stage of healing and declined at the later stage of healing. LO modulates the proinflammatory cytokines and chemokine but did not affect the growth factors. In contrast, OO induced the expression of growth factors rather than proinflammatory cytokines. These data suggest that LO, EPO, and OO emulsions promote wound healing but they accomplish this by different mechanisms.


Assuntos
Ácidos Graxos/administração & dosagem , Óleos/administração & dosagem , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Colágeno/metabolismo , Emulsões , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Ratos Wistar , Pele/lesões , Pele/metabolismo , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...